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Abstract

We derive tight bounds on the cache misses for evaluation of explicit stencil oper-

ators on structured grids. Our lower bound is based on the isoperimetrical property

of the discrete octahedron. Our upper bound is based on a good surface to volume

ratio of a parallelepiped spanned by a reduced basis of the interference lattice of a

grid. Measurements show that our algorithm typically reduces the number of cache

misses by a factor of three, relative to a compiler optimized code. We show that stencil

calculations on grids whose interference lattice have a short vector feature abnormally

high numbers of cache misses. We call such grids unfavorable and suggest to avoid

these in computations by appropriate padding. By direct measurements on a MIPS

R10000 processor we show a good correlation between abnormally high numbers of

cache misses and unfavorable three-dimensional grids.

1 Introduction

On modern computers the gap between access times to cache and to global memory amounts

to several orders of magnitude, and is growing. As a result, improvement in usage of the

memory hierarchy has become a significant source of enhancing application performance.

Well-organized data traffic may improve performance of a program, without changing the

actual amount of computation, by reducing the time the processor stalls waiting for data.

Both data location and access patterns affect the amount of data movement in the program,

and the effectiveness of the cache.

A number of techniques for improvements in usage of data caches have been developed

in recent vears. The techniques include improvements in data reuse (i.e. temporal locality)

[3, 4, 5, 13], improvements in data locality (i.e. spatial locality) [13], and reductions in

conflicts in data accesses [4, 5, 9, 10]. In practice, these techniques are implemented through

code and data transformations such as array padding and loop unrolling, tiling, and fusing.

Tight lower and upper bounds on memory hierarchy access complexity for FFT and matrix
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mllltiplication algorithms ar_, giw, n in 18]. [[owever, q_testi_ms concmnin_ t)_inds on the

number of cache misses and how closely curr,,nt optimization te_'hni(tlt_,s at)pv_)ach those

bounds for stencil uperators remain open.

In this paper we consider improvement of cache usgae through maximizing temporal

locality in evaluations of explicit stencil operators on structured discretization grids. Our

contribution if twofold. First, we prove lower and upper bounds on the, number of cache

misses for local operators on structured grids. Our lower bound (i.e. the number of un-

avoidable misses) is based on the discrete isoperimetric theorem. Our upper bound (i.e. the

achievable number of misses) is based on a cache fitting algorithm which utilizes a special

basis of the grid interference lattice. As shown by example, the lower bound can be achieved

in some cases. The second contribution is the identification of grids unfavorable dimensions

which cause significant increases in cache misses. V_ provide two characterizations of these

unfavorable grids. The first one, derived experimentally, states that the product of all rele-

vant grid dimensions is close to a multiple of half the cache size. The second characterization

is that the grid interference lattice has a short vector.

2 Cache model and definitions

We consider a single-level, virtual-address-mapped, set-associative data cache memory, see

[7]. The memory is organized in a sets of z lines of w words each. Hence, it can be

characterized by the parameter triplet (a, z, w), and its size S equals a • z • w words. A cache

with parameters (a, 1, w) is called fully associative, and with parameters (1, z, w) it is called

direct-mapped.

The cache memory is used as a temporary fast storage of words used for processing. A

word at virtual address A is fetched into a (a(A), z(A), w(A)) cache location, where w(A) =

A mod w, z(A) = (a/w) mod z, and a(A) is determined according to a replacement policy

(usually a variation of least recently used). The replacement policy is not important within

the scope of this paper.

If a word is fetched, then w - 1 neighboring words are fetched as well to fill the cache line

completely. In practice, a, z, and w are often powers of 2 in order to simplify computation

of the location in cache. For example, the MIPS R10000 processor for which we report some

measurements in Section 6, has a cache with parameters (2,512,4), which makes S equal to

4K double precision words, or 32KB.

Our lower bound for the minimum number of cache misses that must be suffered during

a stencil computation holds for any cache, including fully associative caches. The upper

bound shows that a particular number of cache misses can be achieved by choosing a special

sequence of computations. A cache miss is defined as a request for a word of data that is

not present in the cache at the time of the request. A cache load is defined as an explicit

request for a word of data for which no explicit request has been made previously (a cold

load), or whose residence in the cache has expired because of a cache load of another word

of data into the exact same location in the cache (a replacement load). The definitions of

cold and replacement loads match those of cold and replacement cache misses, respectively

[4], and if w equals 1 they completely coincide.

If a piece of code features ¢ cache misses and # cache loads, it can easily be shown that



It _< wO. For a (:o(h, with goo(l spatial h_calitv wr typi(:all.,v have 11 _ u'o..ks ('an b(' shown by

;I simple ('×ample. n,> bo)ind of the form o < ('It ((: constant) can l)(, (I('rive<I f(>r _ubitrarv code

segments, but if the cod(> imph,m(mts a non-redundant stencil operation, we have o < IKjlt.

where ]A I is the total number of points within the stencil. This is shown as follows. Let the

st(:ncil operation be writt(:n as q(x) = Ku(x), with x E _. Here f_ is the (not necessarily

contiguous) point set on which array q is evaluated. Let 9, be the K-extension of _. which

is the point set on which u must be defined in order to compute q at all points of Q. The

total distinct number of dements of u used is I_]. The number of cache misses _ does not

exceed the total number of accesses to array u (may included repeated accesses to the same

element), which equals ]A'j)9.), so [f2] < IKI)9.[. Consequently, we have the following interval

inequality: ]K[ -t < e < w which can be used to bound the number of cache misses in terms
-- 12) -- ,

of the number of cache loads.

3 A lower bound for cache loads for local operators

In this section we consider the following problem: for a given d-dimensional structured grid

and a local stencil operator K, how many cache loads have to be incurred in order to compute

q = Ku, where q and ,t are two arrays defined on the grid. We will provide a lower bound #

which asserts that, regardless of the order the grid points are visited for the computation of q,

at least # cache loads have to occur. In the next section we provide a cache fitting algorithm

for the computation of q whose number of cache loads closely approaches the lower bound.

We use the following terminology to describe the operator K. The vectors k_,... ,k_

defined such that q(x), the value of q at the grid point identified bv the vector x, is a

function of the values u(x Jr k_),... ,u(x + k,), are called stencil vectors. Locality of K means

that the stencil vectors are contained in a cube {x[ [x,] _< r, i = 1,...,d} (r is called the

radius of K, and 2r+ 1 its diameter). In this section we assume that K contains only the

star stencil (i.e. the {0, e_,...,ed,--e_,...,-ed} stencil). A lower bound for cache loads for

the star stencil will give us a lower bound for any stencil containing it.

Let q be computed in the K-interior R of a rectangular region (a grid) G. We assume

that computation of q is performed in a pointwise fashion, that is, at any grid point the

value of q is computed completely before computation of the value of q at another point is

started. In order to compute the value of q at a grid point x, the values of u in neighbor

points of x must be loaded into the cache (a point y is a neighbor of x if y-x is a stencil

vector of K). If x is a neighbor of y and u(y) has been loaded in cache to compute q(z) but

is dropped from the cache before q(x) is computed, then u(y) must be reloaded, resulting in

a replacement load associated with x.

To estimate the number of elements, p, of array u that must be replaced, we choose a

partition of R into a dis.joint union of grid regions Ri, with R = Uk,=_Ri, in such a way that q

is computed in all points of Ri before it is computed at any' point of Ri+I, see Figure 1. Let

B u be the set of points in Rj which are neighbors of Ri. Since the star stencil is symmetrical,

the B u are neighbor points of Bji. Because any point of Bij can have at Inost 2d neighbors

in Bj,, we have the following inequalities:

1
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Figure 1: The boundaries Bi2 of already computed values of q in a sequence of regions Ri.

Reloading of some values of u on the boundary of Ra results in at least max(]Batl+lBa.2]- S, O)

cache loads.

For computation of q in Ri we have to replace at least pi values of u, where Pi equals

(Y'_;-11 [Bijl- ,5', 0)., The total number of replaced values in the course _of computingmax q

on the entire grid will be at least p, where p equals B - kS, and B equals _'_ik=l _-'_._-__11 [Bij ].

Summing all the terms ]Bul, taking into account Equation (1) and the fact that IB.I = 0,
we get:

k k

i=1 j=l

Let (_Ri be the exterior boundary of Ri, that is, all points neighbor to Ri not belonging

to Ri, and let di be the subset of the grid boundary D having neighbors only in R,. Here, D

is defined as G \ R. Obviously, di N 5a = !a if i 7t j, and __jk.=l tBijl > ]dR/[ - I(_i[ .

NOW we choose the Ri such that 15&l = _ >_8dS, where a is specified below, and let u

equal max IR_I. Consequently, we have k >_ [R]/v de2 l//V, and

(o- ) i _ _"s iP -> 4-dl_-__(ISR_I- I_S,I)- ks - k _ - s - _ _ I_,1_>,, - _IDI .
i=[ i=l

We subsequently choose c_ in such a way that

(3)

for some t, where O(d, t) is tile standard d-dimensional octahedron of radius t (see Appendix

A). It follows from Equation 21, Appendix A, that t can be chosen in such a way that (r is



less than 8d(2d + 1)S. Now the value of u can be estimated using the isoperimetric property

of the octahedron (see again Appendix A), namely: i_ _< !O(d, t)!. Hence. w_, flint

,S' o- [_O(d,t)[ ,
- > > > <_S-_=_ (5)
,,,- Sd(2d+ _)_,- 8d(2d+ _)lO(d,01-

where ca equals 1/(d(2d + 1)2d+2). This gives the following lower bound:

t" 150(d,t)l
P -> 8d(2d+ 1) IO(d,t)l

1 l 1

4d IDI >- t'cdS-a-_ - --tDl'4d (6)

We also have t+ IDI = IGi and ID[ _< 2dlG]/1, where l is the smallest size of the grid. This

gives the final lower bound # for the total number of elements of u to be read into the cache:

#___V+p_>V(I+CdS d_-, --- 1) ( 2d+l 2d _\2--t _>ICl 1 t + (1 - T)CdS-d-') . (7)

In general, assuming that the cache associativity a is larger than the diameter of the

operator K, the order of this lower bound can not be improved, as shows the following

example (remember that our lower bound is valid for a cache with any associativity, including

a fully associative cache). Let the spatial extents of a two-dimensional grid be rh and n2,

respectively, with nt equal to kS and n2 arbitrary, and perform calculations of the star stencil

(i.e. r = 1) in the following order:

do i = O, k,a-1

do j = 2, n2-1

do il = max(2,1+i*(S/a)),

q(il,j) = u(il,j) + -..

end do

end do

end do

rain (rh-1, (i+l) * (S/a))

Since nl equals kS, all values of q and u having the same value of the second index are

mapped into the same cache location within a set. Since a exceeds 2r + 1, none of the values

required for the computation of q will be replaced in the cache, except those at a distance

r around the line defined by ±1 = i*S/a. The total number of elements of u read into the

cache for execution of this loop nest will therefore be nln2 + (n2 - 2)2r(ka - 1) - 4, which

equals urn.2(1 - 2/nt + 2a(1 - 2/n2)/S). Similar examples in higher dimensions show that

the order of our lower bound (Equation 7) can not be improved.

4 An upper bound for cache loads for local operators.

Cache fitting algorithm

In order to obtain an upper bound we present a cache fitting algorithm which has a small

munber of replacements. We find a set P of cache conflict-free indices of u and calculate Ku

at the points of P. Then we tile the index space ofu with P to minimize the total number of



replacenu'nts. For the analysiswo assumoan cacheassociativitv _f orw. which is the worst
casefor replacementlomls.

Let L be a set in the index space of a having the same image in ca,:he as the index

(0,..., 0), Figure 2. L is a lattice in the sense that there is a generating set {bi}, i = 1,... ,d,

such that L is the set of grid points {(0,...,0) + _',_=_.c,b_]:r, e Z}. We c.all this the

interference lattice of u. It can be defined as the set of all vectors (it,..., i_t) such that

il + rzt i,__+ ntn.,.ia + "" + r_t "" ha-rid -- 0 rood S. (8)

In [4] this lattice is defined as the set of solutions to the cache miss equation.

Let P be a fundamental parallelepiped of L'. For future reference we note that vol(P) =

det L = S. The second equality follows form the fact that L has a basis {v,} of the form"

i

vt = Set, vi = -m,el + el, 2 < i < d, mi+l = 1I n: . (9)

j=t

Obviously, the vectors ui satisfy Equation 8. Conversely', any" vector satis_'ing Equation 8 can

be represented as a linear combination of vl, • • •, vd, with coefficients xk = i_ for k = 2,..., d,

and xt = (il + m2i2 + ... + mdid)S -l. Xl is an integer number, since i_ + m2i2 + -.- + india

is divisible by S according to Equation 8. Since v_,..., vd are linearly" independent vectors,

they form a basis of the lattice.

Let F be a face of P (see Figure 2), and let v be a basis vector of L such that P =

{f + xvlf E F, 0 _< x < 1}. Then shifts F + (k/g)v, k .... ,-1,0, 1,... contain all integer

points of a pencil Q, with Q = {f + zv t f E F, x is any number} for an appropriate value

of gt. The values of q at the points of Q can be computed without replacing reusable values

of u except at a distance of r or less from the boundary of Q. Let hl,...,h, be the signed

projections along F of the stencil vectors of K onto v, and let h+ and h_ be the maximum

and the minimum of the projections, respectively. We assume also that Ih+ - h_ ]/g < Ivla,

meaning that the extent of P in the direction of v is big enough to allow to compute q on

F without replacements. It may be impossible to satisfy this condition when the shortest

vector in L is shorter than the diameter of K divided by the cache associativity. Lattices

with short vectors are discussed in Section 6. The associated grids are called unfavorable

grids.

The Cache Fitting Algorithm for computing q is as follows (see Figure 2); here K(R) is

the set of points where u must be available in order to compute q in all points of/? (i.e. the

K-extension of R)

set w = (I/g) v

do Q = Omin, Qmax

determine face F inside pencil Q

d
*A fundamental parallelepiped of a lattice L isa set of points {_i=l z,b_ I0 _< x, < I} for any basis {bi}

of L.

tLet [ be a'fundamental parallelepiped of the integer lattice in the subspace Y generated by F, and let
e be an integer vector such that e and the basis of [ generate Z a. Obviously, g must be chosen in such a
way that vol((1/g)v, [) = vol(e, [) = 1. Hence, g = vol(v, [) = (1/IFI)vol(v, F) = vo[(P)/IF I, where IFI is
the index of the lattice L VIY in the integer lattice of Y.
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do k = kmin, kmax

load in cache all values

compute q at F+k,w

end do

end do

of tt inside A'(F+_" _w)

In this algorithm the parameters Qmin, Omax, kmin and kmax are determined such that

the scanning face F sweeps out the entire grid. Whenever a point is not contained in the

grid, it is simply skipped in the nest.

Since we defined the algorithm in such a way that the scanning face in the direction of v

with step g passes through all integer points of Q, the values of q at all points inside Q will

be computed.

Figure 2: The Interference Lattice. Cache fitting set F + kw, k E Z, sweeps across pencil

Q in the direction of v. Only values of u at points at a distance r or less from the pencil

boundaries/31 and/32 will be replaced in the cache when K is evaluated inside of Q.

Replacements misses can occur only at points at a distance of r or less from the boundaries

of the pencils. For each of these points at most s replacement need to take place, where s,

the size of the stencil, is defined by s = IKI _< (2r + 1) J. So the number of replacements will

not exceed r(2r + 1)CA, where A is the total surface area of all pencils.

To minimize A we choose P so that Q has a good surface to volume ratio. Let P be the

fundamental parallelepiped of a reduced basis of L. A basis bt,...,be of a d-dimensional

lattice L is called reduced if

H Ilbill < cddet L, (10)
i



wh(,r{, c,t is a constant which d_,p_,nds onh" on d t. Let bt bo the short ost vector of th, _ basis.

aml [,,t the ecce, ntricitv e of the basis be defin,,d bye = max([',b.,ll,/llb:[[). If w,, doting, 9P

as the surface of P, we can derive an estimation for the surfac[_-t.o-vohmte ra_iu of D:

I

! t ! I') Ej 1-[,_jJib,It < 2cd_ 1 1 -_10PI < -- < < _:_:,_ llb, ll < ecaS-a (tt)
det g - det L - , Ilb_ll - ca_ _ _ ,

where we twice used the Hadamard inequality: I-I_ ][b_]] > det L, and the abovementioned

' is defined by ' = 2dcd.fact that L = S. The constant cd _ ca

Since A does not exceed the surface area of all fundamental parallelepipeds covering

the grid, the total number of these parallelepipeds (which equals IG[/det L) gives us: .4 _<

[OP[[G[/det L, so that the total number of replacements p can be bounded by: p _< r(2r+

1)"]OPllG[/detL. This, combined with Equation 11, gives an upper bound for the total

number of elements to be loaded into the cache in the cache fitting algorithm:

,, -_),u.__Ial + p _ Ial 1 ÷ ec_S , (12)

where cd''is defined by cd''= r(2r + 1)%_.

Note that if the shortest vector in the interference lattice has length (S/f) _/_ for some

constant f it follows that e < fcd. To show this, we sort the basis vectors in Equation 10 in
d-t

S-2- Itball < fed.ascending order. Then it follows that 7 []bd[t _< cdS, and hence e = ttb,lt --

In Appendix B we show that there are grids whose interference lattices feature f's that

are independent of S' (provided that S is a prime power, which is true in most practical

cases). For these lattices the relative gap between the upper bound (Equation 12) and the

lower bound (Equation 7) of the previous section goes to zero as S increases. When the cache

associativity exceeds the diameter of K, this gap can be closed. In that case a parallelepiped,

built on a reduced basis of the interference lattice of the array indices with xa = 0, can be

swept in the d th coordinate direction, similar to the example at the end of Section 3. In

general, the cache fitting algorithm gives full cache utilization, in contrast to the algorithm

for finding grid-aligned parallelepipeds devoid of interference lattice points, as proposed in

[4]. See Table 2, [4], where the sizes of blocks without self interference are approximately
20% smaller than S.

5 Lower and upper bounds for multiple RHS arrays

In this section we consider the case where there multiple arrays involved in the computation

of q. Let p be the number of arrays (we call these the RHS arrays), all having the same sizes,

and let the stencil of each RHS array include the star stencil. This means, in particular,

that for each boundary point of any region R, (see Figure 1) values of p RHS arrays are

necessary _ for computation of q in Ri. Hence, we have to replace at least pi values, with

t Every lattice has a reduced basis. There is a polynomial algorithm to find a reduced basis with a constant
c,t = 2d(a-t)l't [ll, Ch. 6.2].

_As in Section 3, we assume that computation of q is performed in a pointwise fashion. In this case
elements of all RHS arrays have to be loaded into cache simultaneously, reducing the cache size effectively



/), = max(p(_-_j.i[B,jl ) -5'.0} vahws of RI-[S arrays. Now w(_ can rct)_,at tlw ar_;imwnts of

S_ction 3. with It'[ and ](-;[ roplac'od [)5"P[tl and p!(;!, resp(,ctiw, ly. and ._ roplac,'d by iS'/p].

to obtain the following lowt,r bouml f_Jr the number of cache loa<ts for st(,ncil compul:ar_ions

with p R.HS arrays:

,t- [ 1

pIVI 14-Cd 2l# _ plt"l + p

(13)

In order to obtain an upper bound for cache loads for calculations with p RHS arrays,

we assume that we are free to choose relative array offsets. Our upper bound is valid on

the assumption that the stencil diameter divided by the cache associativitv is smaller than

the length of the longest lattice basis vector divided by p. Consider a stripwise tiling of

the fundamental parallelepiped P for the lattice L, see Figure 3. Each tile Pi has the same

size and shape. The size is determined by considering the longest edge vector v in the

fundamental parallelepiped and dividing it into p equal pieces of size [(S/]F[)/p]llvll, so that

each tile contains IFI[(S/IFI)/p] integer points, where [F[ is the number of integer points in

the face. The remainder part of the tiling is indicated by the shaded area. The reason why

the longest edge vector is selected for subdivision is as follows. Since we use a reduced basis,

the smallest angle between v and F is bounded from below, so the parallelepiped is always

close to orthogonal. Therefore, subdividing the longest edge leads to tiles with the largest

inscribed sphere, and thus the largest difference stencil fitting inside the tile.

Let {Pi} be the parallelepipeds of the tiling, and let s, be the address offset of Pi relative

to /:'1 (corresponding to the same RHS array). We assign one parallelepiped to each RHS

array and choose starting addresses of the arrays, addr,, in such a way that images of tiles

P, in the cache do not overlap: addri = addrl + miS -t- si, where rnl = sl = 0, and
[VI--si+si-i

rrh = mi-1 + [ s ], i = 2,..., p. Sweeping through the pencil by units of tile P_ in the

direction of v we can compute Ku without any cache conflicts, except on the boundary of

the pencils. The number of replacement loads of this algorithm can be estimated similarly

to the number of replacement loads of a single-array algorithm, taking into account that for

calculation of a value u at any point values of all p RHS arrays in the neighbor points may'

have to be in cache, thus reducing the effective cache size to [S/p]:

. <_piG[+ p <_plal 1+ ec' (14)

where ca"is a constant which depends only. on d, and e is the eccentricity_ of L.

by a factor of p. Non-pointwise computations may be performed if the operator K is separable, in the sense
that it can be written as K(uL, u.,,..., up) = Kl (ut, K.,(u.,.,... Kp(up)... ). In the case of separability of K
the stencil operation can be split into a succession of independent operations, each involving an intermediate

value of q and one RHS array. This would not require to load all p RHS arrays in cache at each point.
Instead, it would suffice to write intermediate values of q into main memory, and then load them back into
cache for completion of the computations. This results in a larger effective cache size, but more data to be

loaded, so splitting the operation need not improve the total number of loads.

9



Figure 3: Tiling of a fundamental parallelepiped of a reduced basis of the lattice L. We

assume that ]h+ - h_[ _< alv/p] (a is the cache associativity). The tiling effectively reduces

the size of the parallelepiped by a factor of at most 2p (since x/p >_ Lx/p] >_ x/(2p)), and

increases the cost of a replacement in the cache per point of the boundary of the pencil by

at most a factor of p, since elements of all p RHS arrays will be replaced at the same time.

6 Unfavorable array sizes

We have implemented our cache fitting algorithm and compared its actually measured num-

ber of cache misses with those of the compiler-optimized code for the corresponding naturally

ordered loop nest on a bliPS R10000 processor (SGI Origin 2000). For comparison we chose

a second order difference operator (the common 13-point star stencil) an a test set includ-

ing three-dimensional grids of sizes 40 _< nl < 100, rz2 = 91, and na = 100 (the value of

the second dimension was chosen to show a typical picture; that of the third dimension is

irrelevant). A plot of measured cache misses for both codes is shown in Figure 4. The pro-

gram was compiled with options "-03 -LR0 :prefetch=0," using the MIPSpro t77 compiler,

version 7.3.1.1m. The prefetch flag disables the prefetehing compiler optimization. Without

this option the number of cache misses increases significantly', because the compiler does

aggressive prefetching to try to reduce execution time.

The upper bounds for the cache misses from the previous sections would suggest that the

number of replacement cache misses will increase in the cases where the interference lattice

has a very short vector. Very short means that the length is smaller than the diameter of the

operator divided by the cache associativity. In this case the self interference would increase

significantly. This result suggests how to pad arrays to improve cache performance: the

padding should be organized in such a way that the shortest vector in the lattice is not too

short, though short enough to minimize the number of pencils (large index of scanning face

F). The sweeping is organized such that pencils are as wide as possible (i.e. the smallest

total number of pencils), while avoiding--in the case of multiple RHS arrays--tiles that are

10
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Figure 4: Plot of measured cache misses for 40 < n_ < 100, n2 = 91 for 13-point star stencil.

The top line corresponds to the naturally ordered nest, optimized by the SGI Fortran com-

piler. The bottom line corresponds to our cache fitting algorithm. A typical ratio between

the two is 3.5. The large fluctuations correspond to grids with short lattice vectors (nl = 45

and n_ = 90 yield shortest vectors (1,0, 1) and (2, 0, 1), respectively). The fluctuations of

cache misses of the cache fitting algorithm for such grids can be so big that their cache misses

become more numerous than for the compiler-optimized nest.

thinner than the diameter of the stencil operator divided by the cache associativity.

To demonstrate these unfavorable grids we again choose the second order stencil and

force computations in the nest to follow the natural order ¶. Figure 5a shows the correlation

between spikes in the number of cache misses and the presence of a very short vector in the

lattice. We call these lattices unfavorable for cache utilization. Arrays having such lattices

should be avoided on the target machine. When the shortest vector of the interference lattice

is shorter than the diameter of the operator, the number of cache misses sharply increases.

The application developer should avoid such unfavorable array sizes, and compilers should

avoid the sizes using appropriate padding of array dimensions. Note that similar unfavorable

cache effects have been mentioned in [1].

_This forcing is accomplished by introducing a dependence through a Fortran subroutine that performs

a circular shift of its arguments

11
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Figure 5: Plot A shows measured fluctuations of cache misses (above 15_ of the upper

bound). Plot B shows the interference lattices with short (less than 8 in the Lt norm)

vectors. Array sizes are 40 _< nl,n2 < 100. The plots can be fitted well by hyperbolae
t

defined by nln2 = 5kS, k = 1, 2, 3, 4, meaning that arrays with unfavorable size are those

whose z-slices are (close to) multiples of half the cache size. The horizontal line in Plot A

shows the position of the graph from Figure 4.

7 Conclusions and future work

We have demonstrated tight lower and upper bounds for cache misses for calculations of an

explicit operator K on a structured grid. Our lower bound is valid in the general case of

fully associative caches, and is based on a discrete isoperimetric theoren_l. Our upper bound

is based on a cache fitting algorithm which uses the fundamental parallelepiped of a special

basis of the interference lattice to fit the data in the cache. The upper bound assumes that

the shortest vector in the interference lattice is not too short. We have shown that there are

grids whose interference lattices have this property. We have also shown that the presence

of a very short vector in the lattice correlates with fluctuations of actual cache misses for

calculation of a second order explicit operator on three-dimensional grids. The fluctuations

occur on grids with unfavorable sizes, i.e. on those whose product of the first two dinlensions

is (close to) a multiple of half the cache size.

Our results can be extended straightforwardly to implicit stencil computations (i.e. those

of tile form q +- K(q)) when the problem has a one-dimensional data dependence. Such a

data dependence exists if computations of q at grid points can take place in an arbitrary

order, except that there is a single index i for which q(:rl,...,i,...,xd) must be evaluated

before q(x_, ..., i + c_,..., xa) can be calculated (the constant a is either +1 or -1). Clearly,

the lower bound is not affected by the implicitness of K. The previously derived upper bound

can still be achieved by prescribing the proper visit order of points within each parallelepiped,

12



of the scanning face direction within each pencil (positive or negative sweep direction), and

of the visit order of subsoqu_mt pencils. This is always possible for a one-_limensional data

dependency.

Our results can also be extended to arrays that store more than one word per grid point

(tensor arrws). The lower bound of Section 3 for operations with multiple right hand sides

immediately applies to tensor arrays. The upper bound of that section also applies, provided

the tensor components can be stored as independent subarrays.

In a future study we plan to extend the results of this paper to more general implicit

operators, to operators on unstructured grids, and to tensor arrays with restricted storage

models. We intend to study more closely the dependence of cache misses on the size of the

operator's stencil. We also plan to enhance the presented results by taking into account

a secondary cache and TLB, and to formulate bounds for cache misses more directly than

through the determination of cache loads.

Appendix A: The simplex and the octahedron

In this section we list some basic facts on the number of integer points in the octahedron

and simplex. The standard octahedron is defined as:

O(d't) = { x C Zg ] L ]xi] <- t}i=t
(15)

and the standard simplex as:

S(d, 0 = x e Ze I 0 _<x_,...,xe, I_,l -<t (161
i=l

If we consider sections of the octahedron by planes xt

number of integer points in the octahedron we get the following recurrence relation:

t-1

]O(d,t)] = ]O(d- 1,t)] + 2__,]O(d- 1, k)]. (17)
k=O

This relation can be used to prove that

d

k=0

and that

d

.(50(d,t-1),:,O(d,t)-O(d,t-1),: _--_ 2k (_)(:--11). (19)
k=l

Also, the relation

I(_O(d,t)l = I(_O(d,t- 1)1+ laO(d- 1, t)l + I(SO(d- 1,t- 1)1 (20)

= k, k = -t,...,t, then for the
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shows _.hat

For tile nurnber of integer points in the simplex we have the following recurrence relation:

IS(d, t)[ = IS(d- 1,t)[ + IS(d,e.- 1)1. (22)

This can be used to prove that cf. [6], Table 169, see also [12], Section 5:

IS(d,t)l = d "
k=l

(23)

From Equations 18 and 21 it follows that ]O(d,t)] <_ 2alS(d,t)[. Also, since 50(d,t- 1)

contains at least two nonoverlapping simplices S(d- 1, t) and can be covered by 2 d such

simplices, we see that

2IS(d- 1, t)l < 150(d,t- 1)[ _ 2d[S(d - 1, t)[, d > 2. (24)

Hence, if IS(d- 1,t)[ equals S, we have for d _> 2:

(ISO(d- 1,01 2IS(d- l't)l 2 -a+l 1 + d--1 (25)150(d,t)l > > = > 2-a+t S , ,
IO(d,t)l- [O(d,t)l - 2dlS(d,t)l

since from Equation 23 it follows that if IS(d- 1,t)] does not exceed S, then 1 + t/d does
not exceed S I/(d-1).

The isoperimetric inequality [12], Theorem 2, asserts that the size of the boundary of a

subset R in Z d is at least as big as the size of the standard sphere that contains ]R I points II.

It is easy to see that any standard sphere is sandwiched between two standard octahedrons

whose radii differ by one. Since the octahedron has the largest volume for a given fixed-size

boundary, Inequality 25 is true for any lattice body with a boundary of size S.

Appendix B: The existence of grids with favorable lat-
tices

In order to prove that for every cache of size S = p'_, where p is a prime number, there are

grids with interference lattices whose shortest vector has a length l greater than (S/f) l/_,

with f independent of S, we show:

a. For every dimensionalitv d there exists a lattice L of the same dimension whose basis

has the form given in Equation 9 (Section 4), and whose shortest vector is sufficiently

long, and

t). a grid can be constructed that has L as its interference lattice.

lithe standard sphere, defined in [12], is the integer point set of minimal surface area for any given number
of interior points.
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Corolla, ry. Since grills with dimensions n, + k,S. i = 1..... d have the same interfer_mce

lat.tice fi)r attv non-negatiw, integers k,, any grid can be rmbedded in a favorable larger grid.

Proof:

Step a: Let a lattice L have a basis of the form of Equation 9. Any lattice vector x, which

includes all basis vectors of L, with L _ norm at most l must be a solution of the

following system of inequalities:

]xil <_ l , i = 2 .... , d "[

]Sxl + rn2x.2 + " + mdxel <_ l f "

Existence of a solution to this system is equivalent to that of the svstem

(26)

Ixi[ <_ l,i = 2,...,d "l

ra2 md l
(27)

where Ilzll is the distance from z to the nearest integer number. Theorem VIII, Ch. 1

[2] states that there are real numbers #_,..., tta, and a constant d_' depending only on

d, such that

Cll!

(28)

for all nonzero x satisfying Ixil _< l,i = 2,...,d.

If we choose the nonzero integers mi in such a way that Imi - S#i] _< 2 for i = 2,..., d,

then we get

-if-x2 +"" + --ff-X d >_ l"_- t (d - 1)_ = _ -fi ca - (d - 1)) 5
(29)

which shows that Equation 26 has no integer solutions if/ < (c'd'/(Sd)) t/d. Hence, f in

d/c" and the lattice with the basis given by EquationSection 4 can be chosen as: f = _ a,

9 has a reduced basis with eccentricity depending only on d.

Step b: In order to find a grid whose interference lattice is L, we first sort the mi in order of

increasing gcd(mi, S). Since we assume that S = p_, where p is prime, we know that

gcd(rni, S) divides gcd(mi+l, S), and the appropriate grid dimensions ni can be found

directly by solving the congruencies (nim_ - mi+l) mod S = O.
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